[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT AT THE OHIO STATE UNIVERSITY]

Fluorochloroethanes and Fluorochloroethylenes. II

BY ALBERT L. HENNE AND ELBERT C. LADD

A preceding paper¹ has described organic fluorochlorides which were obtained by the progressive replacement of the chlorine atoms by fluorine in hexachloroethane and tetrachloroethylene. In general these compounds were characterized by an unusually high degree of stability and low degree of toxicity.

The investigation is now extended to fluorochloro derivatives of ethane and ethylene, containing one atom of hydrogen in their molecule. Its purpose is to ascertain whether the presence of the fluorine is capable of retarding or even completely preventing the shedding of two halogen atoms or one molecule of hydracid from the ethane molecule with resultant passage to an ethylenic or acetylenic compound. The compounds described hereunder can be visualized as derived from pentachloroethane and from trichloroethylene by gradual replacement of the chlorine atoms by fluorine atoms; however, in actual preparation it is necessary to proceed by roundabout ways in some of the cases, because the introduction of fluorine in these chlorides follows certain definite rules and tends to form asymmetrical compounds, in marked opposition to the cases reported in the first paper.

In every case fluorine has been introduced into the molecule by replacement of a chlorine atom. This scheme and its experimental details have been described in the preceding paper. Treated in the customary fashion with antimony fluoride, pentachloroethane gives, in the following order, CHCl₂CCl₂F, CHCl₂CClF₂ and very small quantities of CHClF·CClF₂ and CHF₂CClF₂. No other derivative is formed, and consequently it can be said that the CCl₃ group is fluorinated first, in preference to the CHCl₂ group, and that only two of its chlorine atoms can be replaced by direct fluorination with antimony fluoride. The first point differs from the course of the fluorination of hexachloroethane, where the successive steps are as symmetrical as possible (CCl₃CCl₃ \rightarrow CCl₂FCCl₃ \rightarrow CCl₂FCCl₂F \rightarrow CClF₂- $CCl_2F \longrightarrow CClF_2CClF_2$) and where the three possible asymmetrical compounds (CCl₃CClF₂, CCl_3CF_3 and CF_3CCl_2F) fail to appear. The second point, however, duplicates the results reported for hexachloroethane. In view of these points, it is evident that roundabout methods are needed to prepare some of the other possible derivatives, namely, CHCIFCCl₃, CHCIFCCl₂F and CHF₂CCl₃.²

To prepare CHClFCCl₃, the following scheme,³ is followed

$$CHCl_{2}CHCl_{2} \xrightarrow{} CHClFCHCl_{2} \xrightarrow{} CHF:CCl_{2} \xrightarrow{} Cl$$

$$Cl$$

$$Cl$$

$$Cl$$

$$CHClFCCl_{3}$$

$$CHClFCCl_{3}$$

The fluorination of CHClFCCl₃ takes place exclusively in the CCl₃ group, in perfect agreement with what has been said hereabove, and it is consequently easy to prepare CHFClCCl₂F.

The asymmetrical difluoride CHF_2CCl_3 is prepared by partial chlorination of $CHF_2CHCl_2^3$ in sunlight. The chlorination affects the $CHCl_2$ group before it touches the CHF_2 group, and consequently an operation conducted in moderate sunlight with a deficiency of chlorine yields a large proportion of CHF_2CCl_3 , and a small quantity of higher boiling $CClF_2CCl_3^1$ which can be eliminated easily.

The ethylenic derivatives (and their dibromides) have all been prepared from the saturated compounds by removal of two halogen atoms with zinc in alcohol or by elimination of one molecule of hydracid with alcoholic potassium hydroxide.

The purification methods, the determination of the physical properties and the analysis procedure have been reported in the preceding paper. Because the fluorination was attended with a very pronounced splitting of hydrochloric acid, particularly when the reagents were not rigorously dried or when an excessive temperature prevailed, an additional step was inserted in the method of purification. The ethylenic derivatives thus formed have boiling points which are so close to those of some of the saturated products that their separation by fractional distillation is quite impractical. They are, however, conveniently removed by treatment with chlorine in the dark;

⁽²⁾ Some of the more highly fluorinated derivatives, namely, CHCl₂CF₃, CHF₂CCl₂F, CHClF₂CF₃ and CHF₂CF₃ have been prepared by chlorination of the corresponding fluorides and will be reported later.

⁽¹⁾ Locke, Brode and Henne, THIS JOURNAL, 56, 1726 (1934).

⁽³⁾ Swarts, Mém. Cour. Roy. Acad. Belg., 61, 44 (1901).

CHCl2CCl2F	М. р.,,⁰С.,	В.р., °С.	<i>T.</i> , °C.	d4				Mol	wt	CL	/F
CHCl ₂ CCl ₂ F				04	nα	nD.	nB		Found	Calcd.	
	-82.6	116.6	20.0	1.62232	1.44634	1.44873	1.45873	185	189	4.0	4.0
CHClFCCl ₃	- 95.35	117.0	20.0	1.62525	1.45005	1.45253	1.45861	185	186	4.0	4.1
CHCl ₂ CClF ₂		71.9	25.0	1.5447		1.3889		169	165	1.5	1.5
CHClFCCl ₂ F	Glass	72.5	20.0	1.55868	1.39216	1.39419	1.39873	169	169	1.5	1.6
CHF2CCl3	Glass	73.0	20.0	1.56613	1.39590	1.39787	1.40278	169	167	1.5	1.6
CHClFCF ₂ Cl		28.0	10.0	1.496				153	150	0.66	0.6
CHF ₂ CF ₂ Cl		-12						136	130	0.25	0.2
CHF=CCl ₂	-108.8	37.3	20.0	1.38327	1.40112	1.40364	1.41031	115	113	2.0	2.0
CHCl=CClF		35.1	16.5	1.4032		1.372				2.0	2.0
CHCl=CF ₂		2.4								0.5	0.5
CHClBrCClFBr		163.5	23	2.2833		1.5160		275	270		
CHClBrCF ₂ Br		118.7	25	2.2319		1.4611		258	258		
	$CHCl_2CCl_2F$ $CHClFCCl_3$ $CHCl_2CCl_2F$ $CHClFCCl_2F$ CHF_2CCl_3 $CHClFCF_2Cl$ CHF_2CF_2Cl $CHF=CCl_2$ $CHCl=CClF$ $CHCl=CF_2$ $CHClBrCClFBr$ $CHClBrCF_2Br$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} CHCIFCCl_3 & - 95.35 & 117.0 & 20.0 \\ CHCl_2CCIF_2 & 71.9 & 25.0 \\ CHCIFCCl_2F & Glass & 72.5 & 20.0 \\ CHF_2CCl_3 & Glass & 73.0 & 20.0 \\ CHCIFCF_2C1 & 28.0 & 10.0 \\ CHF_2CF_2C1 & -12 \\ CHF=CCl_2 & -108.8 & 37.3 & 20.0 \\ CHCl=CCIF & 35.1 & 16.5 \\ CHCl=CF_2 & 2.4 \\ CHClBrCCIFBr & 163.5 & 23 \\ \end{array}$	$\begin{array}{cccccc} CHClFCCl_3 & - & 95.35 & 117.0 & 20.0 & 1.62525 \\ CHCl_2CClF_2 & & 71.9 & 25.0 & 1.5447 \\ CHClFCCl_2F & Glass & 72.5 & 20.0 & 1.55868 \\ CHF_2CCl_3 & Glass & 73.0 & 20.0 & 1.56613 \\ CHClFCF_2Cl & & 28.0 & 10.0 & 1.496 \\ CHF_2CF_2Cl & & -12 \\ CHF=CCl_2 & -108.8 & 37.3 & 20.0 & 1.38327 \\ CHCl=CClF & & 35.1 & 16.5 & 1.4032 \\ CHCl=CF_2 & & 2.4 \\ CHClB_rCClFBr & & 163.5 & 23 & 2.2833 \\ \end{array}$	$\begin{array}{cccccc} CHClFCCl_{3} & - 95.35 & 117.0 & 20.0 & 1.62525 & 1.45005 \\ CHCl_{2}CClF_{2} & 71.9 & 25.0 & 1.5447 \\ CHClFCCl_{2}F & Glass & 72.5 & 20.0 & 1.55868 & 1.39216 \\ CHF_{2}CCl_{3} & Glass & 73.0 & 20.0 & 1.56613 & 1.39590 \\ CHClFCF_{2}Cl & 28.0 & 10.0 & 1.496 \\ CHF_{2}CF_{2}Cl & -12 \\ CHF=CCl_{2} & -108.8 & 37.3 & 20.0 & 1.38327 & 1.40112 \\ CHCl=CClF & 35.1 & 16.5 & 1.4032 \\ CHCl=CF_{2} & 2.4 \\ CHClB_{r}CClFBr & 163.5 & 23 & 2.2833 \\ \end{array}$	$\begin{array}{ccccccc} CHClFCCl_{3} & - 95.35 & 117.0 & 20.0 & 1.62525 & 1.45005 & 1.45253 \\ CHCl_{2}CCl_{2} & 71.9 & 25.0 & 1.5447 & 1.3889 \\ CHClFCCl_{2}F & Glass & 72.5 & 20.0 & 1.55868 & 1.39216 & 1.39419 \\ CHF_{2}CCl_{3} & Glass & 73.0 & 20.0 & 1.56613 & 1.39590 & 1.39787 \\ CHClFCF_{2}Cl & 28.0 & 10.0 & 1.496 \\ CHF_{2}CF_{2}Cl & -12 & \\ CHF=CCl_{2} & -108.8 & 37.3 & 20.0 & 1.38327 & 1.40112 & 1.40364 \\ CHCl=CClF & 35.1 & 16.5 & 1.4032 & 1.372 \\ CHCl=CF_{2} & 2.4 & \\ CHClB_{r}CClFB_{r} & 163.5 & 23 & 2.2833 & 1.5160 \\ \end{array}$	$\begin{array}{ccccccc} CHClFCCl_3 & - 95.35 & 117.0 & 20.0 & 1.62525 & 1.45005 & 1.45253 & 1.45861 \\ CHCl_2CClF_2 & 71.9 & 25.0 & 1.5447 & 1.3889 \\ CHClFCCl_2F & Glass & 72.5 & 20.0 & 1.55868 & 1.39216 & 1.39419 & 1.39873 \\ CHF_2CCl_3 & Glass & 73.0 & 20.0 & 1.56613 & 1.39590 & 1.39787 & 1.40278 \\ CHClFCF_2Cl & 28.0 & 10.0 & 1.496 \\ CHF_2CF_2Cl & -12 & \\ CHF=CCl_2 & -108.8 & 37.3 & 20.0 & 1.38327 & 1.40112 & 1.40364 & 1.41031 \\ CHCl=CClF & 35.1 & 16.5 & 1.4032 & 1.372 \\ CHCl=CF_2 & 2.4 & \\ CHClB_{r}CClFB_{r} & 163.5 & 23 & 2.2833 & 1.5160 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE J

this treatment is repeated until it no longer alters the physical properties (particularly the density and the melting point) of the distilled product.

The experimental results are reported in Table I. Determination of the configurations.

- CHCl₂CCl₂F: Different from (2), whose structure is known; yields CHCl=CClF by treatment with zinc, and CCl₂=CClF with potassium hydroxide. Further fluorination yields CHCl₂CClF₂.
- (2) CHClFCCl₃: Known; yields CHF=CCl₂ with zinc, and CClF=CCl₂ with potassium hydroxide. Its further fluorination yields CHClFCCl₂F.
- (3) CHCl₂CClF₂: Obtained from (1); its chlorination yields CCl₈CClF₂; zinc removes two chlorine atoms, yielding CHCl=CF₂; potassium hydroxide yields CCl₂=CF₂.
- (4) CHClFCCl₂F: Different from (3) and from (5); obtained from (2); chlorination gives CCl₂FCCl₂F; zinc removes two chlorines to yield CHF=CClF; potassium hydroxide yields CClF=CClF.
- (5) CHF₂CCl₃: Obtained from CHCl₂CHF₂; chlorination gives CCl₃CClF₂; zinc removes one atom of chlorine and one atom of fluorine, yielding CHF= CCl₂; potassium hydroxide yields CF₂=CCl₂.
- (6) CHClFCF₂Cl: Obtained from (4) or (3).
- (7) CHF₂CF₂Cl: Obtained in very small amounts. Constitution established only by analogy.
- (8) CHF=CCl₂: Obtained from (2). Not separable into stereoisomers.
- (9) CHCl=CClF: Obtained from (1). Boiling range shows a range indicative of a mixture of stereoisomers.
- (10) CHCl=CF₂: Obtained from (3), no indication of isomer mixture.

Molecular Refraction.—The molecular refractions have been calculated by means of the Lorentz–Lorenz formula. The atomic refraction of fluorine has been obtained by subtracting the "I. C. T." increments for C, H, Cl and Br from the experimental molecular refractions.

	Temp., °C.	MR. exptl.	At. refr., F
CHC1FCC1 ₈	20.0	30.878	1.074
CHF ₂ CCl ₃	20.0	26.100	1.136
CHClFCCl ₂ F	20.0	25.003	1.083
$CHCl_2CCl_2F$	20 . 0	30.711	0.907
CHF=CCl ₂	20.0	20.300	0.697
$CHCl_2CClF_2$	25.0	25.92	1.06

So far as the physical properties go, it is thus apparent that it matters little where the fluorine substitution takes place, as the physical properties are about equally affected in the various isomers. It does not follow that fluorination occurs at random; in fact, fluorination preferably takes place in the group where no hydrogen is present, and tends to give asymmetrical compounds. The presence of the fluorine has a marked stabilizing effect on the whole molecule, and this stabilizing effect is particularly enhanced by the presence of two atoms of fluorine on the same carbon. The physiological effect of these compounds parallels their chemical behavior, and will be reported in a medical journal.

Summary

Derivatives of ethane and of ethylene, containing chlorine, fluorine and one atom of hydrogen are presented. Attention is directed to the preferential course of the fluorination during synthesis.

Columbus, Ohio

RECEIVED DECEMBER 30, 1935